# Crystal and Molecular Structure of Two Calix[6]arenes: *p*-Isopropylcalix[6]arene and *p-tert*-Butylcalix[6]arene–Benzene(1:3) Complex

#### M. HALIT, D. OEHLER, M. PERRIN,\* and A. THOZET

Laboratoire de Mineralogie – Cristallographie, UA 805 CNRS, Université Claude Bernard Lyon I, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

## R. PERRIN, J. VICENS, and M. BOURAKHOUADAR

Laboratoire de Chimie Industrielle, Cristallographie et Chimie des matériaux, UA 805 CNRS, Université Claude Bernard Lyon I, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

(Received: 16 February 1988; In final form: 23 June 1988)

Abstract. The isopropyl derivative crystallizes from a mixture of carbon disulfide and benzene in the orthorhombic system: Space group  $P2_1nb$ , a = 17.420(3), b = 17.708(3), c = 18.972(3) Å, V = 5852(3) Å<sup>3</sup>, Z = 4. The *t*-butyl derivative crystallizes from benzene, but the crystal is a complex (1:3), space group  $P\overline{1}$ , a = 15.065(5), b = 19.103(3), c = 13.878(3) Å,  $\alpha = 106.95(2)$ ,  $\beta = 102.72(2)$ ,  $\gamma = 80.61(2)^{\circ}$ , V = 3703(2) Å<sup>3</sup>, Z = 2. Refinement led to R = 0.185 for 1512 reflections for the isopropyl derivative, a sufficiently high number to establish the conformation of the molecule; for the *t*-butyl complex R = 0.12 for 7340 reflections. Intramolecular hydrogen bonds are given as well as comparison of the conformation of both compounds. The *t*-butyl groups and the benzene molecules are disordered but the isopropyl groups are not.

Key words. X-Ray crystal structure analysis, calixarene conformation.

Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82071 (57 pages).

## 1. Introduction

During the last few years, the calixarenes have been widely investigated, and in particular the structures of these macrocyclic compounds have been established by X-Ray diffraction methods. Several calix[4]arenes, calix[5]arenes, calix[6]arenes and even calix[8]arenes have been thoroughly investigated [1–10] and the different conformations, as well as their abilities to give complexes with solvents or cations have been compared. The present study reports the crystal structures of two calix[6]arenes with R = H, R' = CH (CH<sub>3</sub>)<sub>2</sub> (compound A) and R = H, R' = C (CH<sub>3</sub>)<sub>3</sub> (compound B).



\* Author for correspondence.

The crystal structure of a cyclic hexamer in the free phenolic form has not yet been reported. The conformation of p-t-butyl calix[6] arene has been mentioned [11]. It is of interest to know the two conformations since compound A does not retain solvent whereas crystals of compound B are obtained with three molecules of benzene.

# 2. Experimental

#### 2.1. SYNTHESIS

The calixarenes were synthesized by the reaction of the appropriate *para*-alkylphenol and formaldehyde according to Gutsche [12, 13].

### 2.2. CRYSTAL DATA

Compound A.  $C_{60}H_{72}O_6$ : formula weight = 888. Orthorhombic, a = 17.420(3), b = 17.708(3); c = 18.972(3) Å; V = 5852(3) Å<sup>3</sup>; Z = 4;  $D_x = 1.01$  g cm<sup>-3</sup>;  $\mu = 4.34$  cm<sup>-1</sup>, space group  $P2_1nb$  (No. 33), or *Pmnb* (No. 53);  $P2_1nb$  chosen after calculation of the distribution of the  $\langle |E|^2 - 1 \rangle$  value.

Compound B.  $C_{66}H_{84}O_6 + C_6H_6$ : formula weight = 1206. Triclinic, a = 15.065(5), b = 19.103(3), c = 13.868(3) Å,  $\alpha = 106.95(2)$ ,  $\beta = 102.72(2)$ ,  $\gamma = 80.61(2)^\circ$ , V = 3703(2) Å<sup>3</sup>; Z = 2;  $D_x = 1.08$  g cm<sup>-3</sup>;  $\mu = 4.19$  cm<sup>-1</sup>; space group  $P\bar{1}$  (No. 2).

#### 2.3. STRUCTURE DETERMINATION

Single crystals were obtained by slow evaporation of solutions at room temperature: a mixture of carbon disulfide-benzene for compound A; benzene for compound B. Preliminary Weissenberg photographs were taken, then an Enraf Nonius CAD-4 automatic diffractometer was used to refine lattice parameters using 25 accurately centred reflections and to collect intensities of independent reflections; one standard reflection was measured every 60 min to monitor the intensity and the same at 100 reflection intervals to control the orientation of the crystal. Crystals of compound A were of poor quality, so only 1512 independent reflections out of 11370 measured were used for refinement; for compound B, 7390 were used out of 10106 measured. Lorentz and polarisation corrections were applied, but not absorption corrections.

Structures were solved by direct methods using SHELX [14] for A, and MULTAN [15] for B. The best maps for both structures revealed only a few atoms, among them the six oxygens. Step by step, other atoms were found, those of the *para*-substituents with difficulty.

For compound A, a least-squares refinement of coordinates and isotropic thermal parameters was made by the rigid body method using SHELX [14]. Hydrogen atoms were placed in their calculated positions with C—H = 1.08 Å. Final R is 0.185 for 1512 reflection  $(I > 2.5\sigma(I))$  and the final electron density map showed the highest residual peak of 0.63e Å<sup>-3</sup>. Table I gives the final atomic coordinates and  $U_{iso}$  (numbering scheme in Figure 1) [16]. For compound B, Fourier maps showed additional peaks around some *t*-butyl groups and two of the three benzene molecules. These peaks were added with occupancy factors. The hydrogen atoms of phenol rings and methylene bridges appeared on Fourier difference maps while other hydrogens were calculated at 1.08 Å from C.

# STRUCTURE OF TWO CALIX[6]ARENES

| Atoms  | x                      | у       | Ζ                    | $U_{\rm iso}$  |
|--------|------------------------|---------|----------------------|----------------|
| C(37)  | 0395(8)                | 5786(5) | 11532(5)             | 09(1)          |
| C(38)  | 0465(6)                | 5113(8) | 10281(4)             | 08(1)          |
| C(39)  | -0477(6)               | 5278(8) | 9341(5)              | 09(1)          |
| C(40)  | -1461(8)               | 4913(6) | 10389(4)             | 09(1)          |
| C(41)  | -1562(5)               | 5820(6) | 11483(7)             | 11(1)          |
| C(42)  | -0531(6)               | 6849(6) | 11751(8)             | 09(1)          |
| C(1)   | 1279(8)                | 6165(5) | 12460(5)             | 07(1)          |
| C(2)   | 0898(6)                | 6953(6) | 12449(8)             | 12(1)          |
| C(3)   | 0082(6)                | 6980(6) | 12848(8)             | 09(1)          |
| C(4)   | 0062(6)                | 7089(6) | 13575(8)             | 09(1)          |
| C(5)   | -0641(6)               | 7170(6) | 13920(8)             | 09(1)          |
| C(6)   | -1323(6)               | 7143(6) | 13436(8)             | 10(2)          |
| C(7)   | -1303(6)               | 7035(6) | 12808(8)             | 10(2)<br>08(1) |
| C(8)   | -2096(5)               | 6933(6) | 12463(7)             | 00(1)          |
| C(0)   | = 2090(5)<br>= 2274(5) | 6079(6) | 12403(7)<br>12418(7) | 10(1)          |
| C(10)  | 2854(5)                | 5946(6) | 12910(7)             | 10(1)<br>15(1) |
| C(10)  | -2834(3)               | 5226(6) | 12909(7)             | 13(1)<br>14(1) |
| C(12)  | -3175(5)               | 3220(0) | 12970(7)<br>12520(7) | 14(1)          |
| C(12)  | -2910(3)               | 4041(0) | 12339(7)             | 09(1)          |
| C(13)  | -2333(3)               | 4773(0) | 12048(7)             | $\Pi(1)$       |
| C(14)  | - 1904(8)              | 4274(6) | 11520(4)             | 08(1)          |
| C(15)  | -2403(8)               | 4088(6) | 10872(4)             | 09(1)          |
| C(16)  | - 2900(8)              | 3438(6) | 10750(4)             | 08(1)          |
| C(17)  | -3125(8)               | 3309(6) | 10064(4)             | 08(1)          |
| C(18)  | -2853(8)               | 3738(6) | 9499(4)              | $\Pi(1)$       |
| C(19)  | -2356(8)               | 4342(6) | 9621(4)              | 14(1)          |
| C(20)  | -2019(6)               | 4703(8) | 8949(5)              | 16(1)          |
| C(21)  | -1252(6)               | 4379(6) | 8731(5)              | 06(1)          |
| C(22)  | -1310(6)               | 3733(8) | 8315(5)              | 11(2)          |
| C(23)  | -0647(6)               | 3376(8) | 8087(5)              | 09(1)          |
| C(24)  | 0073(6)                | 3667(8) | 8241(5)              | 09(1)          |
| C(25)  | 0131(6)                | 4314(8) | 8657(5)              | 11(2)          |
| C(26)  | 0903(6)                | 4651(8) | 8929(4)              | 08(1)          |
| C(27)  | 1210(6)                | 4261(8) | 9604(4)              | 08(1)          |
| C(28)  | 1772(6)                | 3701(8) | 9576(4)              | 10(1)          |
| C(29)  | 2022(6)                | 3354(8) | 10195(4)             | 14(1)          |
| C(30)  | 1709(6)                | 3365(8) | 10842(4)             | 14(1)          |
| C(31)  | 1147(6)                | 4127(8) | 10870(4)             | 08(1)          |
| C(32)  | 0878(8)                | 4168(5) | 11646(5)             | 07(1)          |
| C(33)  | 1202(8)                | 4881(5) | 12035(5)             | 08(9)          |
| C(34)  | 1755(8)                | 4662(5) | 12525(5)             | 12(1)          |
| C(35)  | 2071(8)                | 5195(5) | 12983(5)             | 10(1)          |
| C(36)  | 1833(8)                | 5946(5) | 12950(5)             | 07(1)          |
| C(37)  | 0964(8)                | 5633(5) | 12002(5)             | 10(1)          |
| C(38)  | 0897(6)                | 4474(8) | 10251(4)             | 07(1)          |
| C(39)  | -0532(6)               | 4670(8) | 8902(5)              | 08(1)          |
| C(40)  | -2131(8)               | 4517(6) | 10307(4)             | 10(1)          |
| C(41)  | -2014(5)               | 5494(6) | 11988(7)             | 07(1)          |
| C(42)  | -0601(6)               | 6953(6) | 12464(8)             | 08(1)          |
| C(51)  | -0727(6)               | 7257(6) | 14723(8)             | 14(1)          |
| C(52)  | -0148(6)               | 6712(6) | 15095(8)             | 17(0)          |
| C(53)  | -0609(6)               | 8111(6) | 14835(8)             | 20(0)          |
| C(111) | -3787(5)               | 4937(6) | 12456(7)             | 17(0)          |
| . ,    |                        | · · ·   |                      | < - /          |

Table I. Fractional atomic coordinates ( $\times 10^4$ ) and  $U_{iso}$  ( $\times 10^2$ ) with standard deviations for non-hydrogen atoms (Compound A).

| Atoms  | x        | у       | Ζ        | $U_{\rm iso}$ |
|--------|----------|---------|----------|---------------|
| C(112) | -4487(5) | 5429(6) | 13484(7) | 20(0)         |
| C(113) | -3486(5) | 4737(6) | 14173(7) | 17(0)         |
| C(171) | -3802(8) | 2774(6) | 9908(4)  | 17(0)         |
| C(172) | -3640(8) | 1937(6) | 10073(4) | 17(0)         |
| C(173) | -4665(8) | 2959(6) | 9969(4)  | 20(0)         |
| C(231) | -0695(6) | 2666(8) | 7595(5)  | 16(1)         |
| C(232) | -0796(6) | 2839(8) | 6804(5)  | 20(0)         |
| C(233) | -1330(6) | 2128(8) | 7860(5)  | 17(0)         |
| C(291) | 2565(6)  | 2668(8) | 10140(4) | 15(1)         |
| C(292) | 2402(6)  | 1980(8) | 9652(4)  | 17(0)         |
| C(293) | 2423(6)  | 2792(8) | 10257(4) | 20(0)         |
| C(351) | 2727(8)  | 4999(5) | 13503(5) | 17(0)         |
| C(352) | 3517(8)  | 4915(5) | 13184(5) | 17(0)         |
| C(353) | 2692(8)  | 5448(5) | 14183(5) | 20(0)         |

Table I. Continued.



Fig. 1. Numbering scheme.

Refinement of positional parameters, anisotropic  $U_{ij}$  for carbon, and oxygen atoms except those with occupancy <1.0 led to R = 0.12 with unit weight for 7340 reflections  $(I > 2.5\sigma(I))$ ,  $(\Delta/\sigma)_{av} = 0.42$  and residual density = 0.32e Å<sup>-3</sup>; Table II gives the final atomic coordinates and  $U_{eq}$  (with the same numbering scheme) [17]. The thermal parameters for compound B, the observed and calculated structure factors for both compounds are in supplementary Publication No. 82071 deposited at the British Library.

## 3. Discussion of Results

Some selected bond distances and angles as well as torsion angles are given in Table III for compound B. Unfortunately, due to the quite limited number of observed reflections, the e.s.d. values are high for compound A. Oxygen atoms are at the corners of a boat conformation hexagon. No particular disymmetry is found around the C—O bonds as

# STRUCTURE OF TWO CALIX[6]ARENES

| Atoms        | x                    | У                  | Ζ                    | $U_{\mathrm{eq}}$ |  |
|--------------|----------------------|--------------------|----------------------|-------------------|--|
| Calix        |                      |                    |                      |                   |  |
| O(37)        | 9089(4)              | 2674(3)            | 8011(4)              | 057(2)            |  |
| O(38)        | 9734(4)              | 3545(3)            | 9802(4)              | 066(3)            |  |
| O(39)        | 11000(4)             | 3017(3)            | 11165(5)             | 069(3)            |  |
| O(40)        | 11779(4)             | 1655(3)            | 10801(4)             | 057(2)            |  |
| O(41)        | 10042(4)             | 1454(3)            | 10573(4)             | 063(3)            |  |
| O(42)        | 8766(4)              | 1935(3)            | 9224(5)              | 069(3)            |  |
| C(1)         | 7512(5)              | 2549(4)            | 7257(6)              | 053(3)            |  |
| C(2)         | 7658(7)              | 1708(4)            | 7208(7)              | 058(4)            |  |
| C(3)         | 7377(5)              | 1548(4)            | 8105(6)              | 051(3)            |  |
| C(4)         | 6541(6)              | 1289(5)            | 7992(7)              | 063(4)            |  |
| C(5)         | 6257(6)              | 1144(5)            | 8793(7)              | 069(4)            |  |
| C(6)         | 6812(6)              | 1300(5)            | 9724(8)              | 060(4)            |  |
| C(7)         | 7654(5)              | 1572(4)            | 9902(6)              | 050(4)            |  |
| C(8)         | 8209(6)              | 1751(5)            | 10969(7)             | 059(4)            |  |
| C(9)         | 8891(5)              | 1121(4)            | 11226(5)             | 050(3)            |  |
| C(10)        | 8604(6)              | 0655(4)            | 11696(6)             | 056(4)            |  |
| C(11)        | 9208(6)              | 0076(4)            | 11967(6)             | 056(3)            |  |
| C(12)        | 10082(6)             | -0003(4)           | 11796(6)             | 055(4)            |  |
| C(12)        | 10002(0)<br>10407(5) | 0445(4)            | 11352(6)             | 053(4)            |  |
| C(13)        | 11357(7)             | 0356(5)            | 11206(8)             | 0.52(3)           |  |
| C(15)        | 11957(7)             | 0918(4)            | 11200(6)             | 051(3)            |  |
| C(15)        | 12227(7)             | 0910(4)            | 12044(8)             | 051(3)            |  |
| C(10)        | 12327(7)<br>12834(5) | 1325(4)            | 12744(0)             | 0.02(4)           |  |
| C(19)        | 12034(3)             | 1929(4)            | 13/10(0)             | 058(5)            |  |
| C(10)        | 12903(3)             | 1939(4)            | 13437(0)             | 058(3)            |  |
| C(19)        | 12030(3)             | 2009(4)            | 12302(0)             | 0.52(5)           |  |
| C(20)        | 12006(5)             | 2/00(4)            | 12289(7)             | 056(4)            |  |
| C(21)        | 12100(3)             | 5457(4)<br>2050(4) | 12044(0)<br>12750(6) | 050(3)            |  |
| C(22)        | 12339(0)             | 3930(4)            | 13750(6)             | 058(4)            |  |
| C(23)        | 11/18(5)             | 4536(4)            | 139/4(6)             | 052(3)            |  |
| C(24)        | 10855(6)             | 4575(4)            | 13398(6)             | 051(4)            |  |
| C(25)        | 10580(5)             | 4076(4)            | 12458(6)             | 048(3)            |  |
| C(26)        | 9586(6)              | 4103(5)            | 11962(7)             | 055(4)            |  |
| C(27)        | 9237(5)              | 4535(4)            | 1114/(6)             | 048(3)            |  |
| C(28)        | 8/62(5)              | 5235(4)            | 11441(6)             | 052(3)            |  |
| C(29)        | 8318(4)              | 8614(4)            | 10/19(6)             | 054(4)            |  |
| C(30)        | 8375(5)              | 52/8(5)            | 9708(4)              | 052(3)            |  |
| C(31)        | 8850(5)              | 4590(4)            | 9366(6)              | 048(3)            |  |
| C(32)        | 8831(6)              | 4243(5)            | 8250(5)              | 055(4)            |  |
| C(33)        | 8070(5)              | 3745(4)            | 7753(6)              | 049(4)            |  |
| C(34)        | 7198(6)              | 4016(5)            | 7377(7)              | 055(4)            |  |
| C(35)        | 6468(5)              | 3611(4)            | 6950(6)              | 055(3)            |  |
| C(36)        | 6662(6)              | 2846(5)            | 6888(6)              | 058(4)            |  |
| C(37)        | 8222(5)              | 2984(4)            | 7673(6)              | 049(3)            |  |
| C(38)        | 9273(5)              | 4243(4)            | 10130(6)             | 051(3)            |  |
| C(39)        | 11241(5)             | 3520(4)            | 12093(5)             | 050(3)            |  |
| C(40)        | 12128(5)             | 1557(4)            | 11760(6)             | 050(3)            |  |
| C(41)        | 9761(5)              | 1000(4)            | 11055(6)             | 052(3)            |  |
| C(42)        | 7920(5)              | 1681(4)            | 9056(6)              | 051(3)            |  |
| C(51)        | 5302(8)              | 0840(7)            | 8694(8)              | 106(6)            |  |
| C(52) [0.53] | 5089(18)             | 0338(13)           | 7562(21)             | 100(0)            |  |

Table II. Fractional coordinates  $(\times 10^4)$  and  $U_{\rm eq}$   $(\times 10^2)$  with standard deviations of non-hydrogen atoms (Compound B). Occupation factors in brackets.

| Atoms                   | x                   | у                  | Ζ                      | $U_{\rm eq}$ |
|-------------------------|---------------------|--------------------|------------------------|--------------|
| C(53) [0.53]            | 4531(18)            | 1368(20)           | 8300(20)               | 100(0)       |
| C(54) [0.53]            | 4854(17)            | 1194(13)           | 9606(20)               | 100(0)       |
| C(55) [0.47]            | 5662(15)            | -0026(9)           | 8656(18)               | 100(0)       |
| C(56) [0.47]            | 5465(15)            | 0226(11)           | 9240(16)               | 100(0)       |
| C(57) [0.47]            | 4756(15)            | 0766(13)           | 7559(13)               | 100(0)       |
| C(111)                  | 8867(6)             | -0425(5)           | 12515(7)               | 071(4)       |
| C(112) [0.52]           | 7857(18)            | -0611(13)          | 11907(19)              | 100(0)       |
| C(113) [0.52]           | 8818(17)            | -0010(13)          | 13632(18)              | 100(0)       |
| C(114) [0.52]           | 9507(17)            | -1142(13)          | 12441(18)              | 100(0)       |
| C(115) [0.48]           | 9237(18)            | -1250(14)          | 11927(20)              | 100(0)       |
| C(116) [0.48]           | 7831(18)            | -0032(14)          | 12475(21)              | 100(0)       |
| C(117) [0.48]           | 9414(18)            | -0236(14)          | 13656(20)              | 100(0)       |
| C(171)                  | 13232(6)            | 1222(5)            | 12786(7)               | 073(4)       |
| C(172) [0.69]           | 13094(11)           | 0471(9)            | 14873(18)              | 100(0)       |
| C(173) [0.69]           | 14316(12)           | 1231(9)            | 15001(13)              | 100(0)       |
| C(174) [0.69]           | 12818(12)           | 1231(9)<br>1820(9) | 15604(13)              | 100(0)       |
| C(175) [0.31]           | 13713(25)           | 1857(21)           | 15571(31)              | 100(0)       |
| C(176) [0.31]           | 12313(25)           | 1290(20)           | 15308(28)              | 100(0)       |
| C(177) [0.31]           | 13923(25)           | 0559(19)           | 14633(28)              | 100(0)       |
| C(231)                  | 11002(6)            | 5060(4)            | 15027(6)               | 063(4)       |
| C(232)                  | 12151(9)            | 4614(7)            | 15873(10)              | 111(4)       |
| C(232)                  | 12888(8)            | 5371(7)            | 15109(10)              | 103(3)       |
| C(233)                  | 11284(10)           | 5711(7)            | 15270(10)              | 105(3)       |
| C(234)                  | 7751(5)             | 5711(7)            | 13270(10)<br>11071(7)  | 110(4)       |
| C(291)<br>C(292) [0.85] | 7114(0)             | 6333(8)            | 11071(7)<br>11772(11)  | 100(0)       |
| C(292) [0.05]           | 7114(9)             | 6627(7)            | 11772(11)              | 100(0)       |
| C(293) [0.83]           | 7190(9)<br>8454(0)  | 6020(8)            | 101/2(10)<br>11710(11) | 100(0)       |
| C(294) [0.85]           | 8434(9)<br>6706(25) | 6939(8)            | 11/10(11)              | 100(0)       |
| C(295) [0.15]           | 0700(23)            | (059(20)           | 10001(52)              | 100(0)       |
| C(296) [0.15]           | 8338(41)            | 0938(30)           | 11036(30)              | 100(0)       |
| C(297) [0.15]           | 7300(48)            | 2008(5)            | 12100(27)              | 100(0)       |
| C(351)                  | 5301(0)             | 3906(3)            | (757(0))               | 0/1(4)       |
| C(352)                  | 5414(8)             | 4/5/(7)            | 0/3/(9)<br>5202(0)     | 092(3)       |
| C(353)                  | 3207(8)             | 3390(0)            | 5592(9)<br>7040(11)    | 1063(3)      |
| C(354)                  | 4/8/(9)             | 3732(8)            | 7049(11)               | 100(4)       |
| Solvent                 |                     |                    |                        |              |
| C(101)                  | 9949(8)             | 7452(7)            | 4318(9)                | 095(7)       |
| C(102)                  | 9506(10)            | 6961(6)            | 4553(10)               | 106(6)       |
| C(103)                  | 9336(9)             | 7090(7)            | 5525(12)               | 102(7)       |
| C(104)                  | 9601(10)            | 7684(7)            | 6277(9)                | 109(6)       |
| C(105)                  | 10023(13)           | 8166(8)            | 6024(11)               | 141(8)       |
| C(106)                  | 10198(9)            | 8058(8)            | 5088(11)               | 119(7)       |
| C(201) [0.58]           | 5781(11)            | 2292(10)           | 2682(10)               | 120(0)       |
| C(202) [0.58]           | 6620(11)            | 2581(10)           | 3068(10)               | 120(0)       |
| C(203) [0.58]           | 7267(11)            | 2295(10)           | 3783(10)               | 120(0)       |
| C(204) [0.58]           | 7074(11)            | 1721(10)           | 4111(10)               | 120(0)       |
| C(205) [0.58]           | 6235(11)            | 1433(10)           | 3724(10)               | 120(0)       |
| C(206) [0.58]           | 5588(11)            | 1718(10)           | 3010(10)               | 120(0)       |
| C(301) [0.62]           | 7020(7)             | 3771(7)            | 10237(10)              | 120(0)       |
| C(302) [0.62]           | 4329(7)             | 3369(7)            | 9574(10)               | 120(0)       |
| C(303) [0.62]           | 5567(7)             | 3290(7)            | 9935(10)               | 120(0)       |
| C(304) [0.62]           | 5496(7)             | 3613(7)            | 10960(10)              | 120(0)       |

Table II. Continued.

| Atoms         | x        | у        | Z         | $U_{\mathrm{eq}}$ |
|---------------|----------|----------|-----------|-------------------|
| C(305) [0.62] | 6187(7)  | 4014(7)  | 11623(10) | 120(0)            |
| C(306) [0.62] | 6949(7)  | 4094(7)  | 11262(10) | 120(0)            |
| C(401) [0.42] | 7020(16) | 2392(12) | 3392(20)  | 120(0)            |
| C(402) [0.42] | 7112(16) | 2055(12) | 4181(20)  | 120(0)            |
| C(403) [0.42] | 6443(16) | 1630(12) | 4181(20)  | 120(0)            |
| C(404) [0.42] | 5681(16) | 1541(12) | 3391(20)  | 120(0)            |
| C(405) [0.42] | 5589(16) | 1878(12) | 2602(20)  | 120(0)            |
| C(406) [0.42] | 6258(16) | 2304(12) | 2603(20)  | 120(0)            |
| C(501) [0.38] | 6225(13) | 4337(12) | 9972(16)  | 120(0)            |
| C(502) [0.38] | 6748(13) | 3579(12) | 9823(16)  | 120(0)            |
| C(503) [0.38] | 6167(13) | 3163(12) | 10027(16) | 120(0)            |
| C(504) [0.38] | 5364(13) | 3503(12) | 10380(16) | 120(0)            |
| C(505) [0.38] | 5141(13) | 4677(12) | 10324(16) | 120(0)            |
| C(506) [0.38] | 5722(13) | 4677(12) | 10324(16) | 120(0)            |

Table II. Continued.

Table III. Selected bond distances (Å), bond angles (°) and torsion angles (°) for compound B.

| O(1) $O(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 67(1)      |          |       | C(10)           | 0(00)  | 1.56(1)   |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------|-----------------|--------|-----------|----------|
| C(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5/(1)      |          |       | C(19)-          | -C(20) | ) 1.56(1) |          |
| C(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.52(1)      |          |       | C(20)-          | -C(21) | ) 1.53(1) |          |
| C(7) - C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.50(1)      |          |       | C(25)-          | -C(26) | ) 1.50(1) |          |
| C(8) - C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.62(1)      |          |       | C(26)-          | -C(27) | ) 1.54(1) |          |
| C(13) - C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.49(1)      |          |       | C(31)-          | -C(32) | ) 1.49(1) |          |
| C(14) - C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.51(1)      |          |       | C(32)-          | -C(33) | ) 1.52(1) |          |
| C(37)-O(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.38(1)      |          |       | C(40)-          | -O(40) | ) 1.37(1) |          |
| C(38)-O(38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.40(1)      |          |       | C(41)-          | -O(41) | ) 1.40(1) |          |
| C(39)-O(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.38(1)      |          |       | C(42)-          | -O(42) | ) 1.39(1) |          |
| O(37)-O(38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.63(1)      |          |       | O(40)-          | -O(41) | ) 2.64(1) |          |
| O(38)-O(39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.67(1)      |          |       | O(41)-          | -O(42  | ) 2.62(1) |          |
| O(39)-O(40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.63(1)      |          |       | O(42)-          | -O(37  | ) 2.65(1) |          |
| C(1)-C(2)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3)          | 112.7(7) |       | C(19)-          | -C(20) | )C(21)    | 112.4(7) |
| C(7)-C(8)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (9)          | 114.6(7) |       | C(25)-          | -C(26) | -C(27)    | 119.3(9) |
| C(13) - C(14) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -C(15)       | 114.2(8) |       | C(31)-          | -C(32) | -C(33)    | 113.3(8) |
| C(1) - C(37) | <b>D(37)</b> | 120.1(7) |       | C(15)-          | -C(40) | -O(40)    | 119.3(7) |
| C(35)-C(37)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -O(37)       | 119.7(8) |       | C(19)-          | -C(40) | O(40)     | 121.2(7) |
| C(3) - C(42) | D(42)        | 121.0(8) |       | $\dot{C(21)}$ - | -C(39) | )0(39)    | 119.0(7) |
| C(7) - C(42) | D(42)        | 116.8(8) |       | C(25)-          | -C(39) | )-O(39)   | 118.6(8) |
| C(9) - C(41) | D(41)        | 118.9(7) |       | C(27)-          | -C(38) | -0(38)    | 119.7(7) |
| C(13) - C(41) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -Ò(41)       | 118.0(9) |       | C(31)-          | -C(38) | )—O(38)   | 116.0(7) |
| C(37) - C(1) - | C(2)—C       | (3)      | 96(   | 1)              |        |           |          |
| C(1) - C(2) - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3) - C(4)   | 42)      | -77(  | 1)              |        |           |          |
| C(42) - C(7) - | C(8)-C       | (9)      | - 90( | 1)              |        |           |          |
| C(7) - C(8) - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (9)C(4       | 41)      | 89(   | 1)              |        |           |          |
| C(41) - C(13) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -C(14)-      | -C(15)   | 77(   | ń               |        |           |          |
| C(13) - C(14) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -C(15)-      | -C(40)   | -990  | 'n              |        |           |          |
| C(40) - C(19) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -C(20)-      | -C(21)   | 94(   | Ď               |        |           |          |
| C(19) - C(20) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -C(2i) -     | -C(39)   | -780  | 'n              |        |           |          |
| C(39) - C(25) - C(25 | -C(26)-      | -C(27)   | -930  | $\vec{1}$       |        |           |          |
| C(25) - C(26) - C(26 | -C(27) -     | -C(38)   | 860   | ñ               |        |           |          |
| C(38) - C(31) - C(31 | -C(32) -     | -C(33)   | 830   | ň               |        |           |          |
| C(31) - C(32) - C(32 | -C(33)-      | -C(37)   | -930  | ň               |        |           |          |
| -()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -(33)        | ~(~')    | 15(   | ~/              |        |           |          |

\_\_\_

M. HALIT ET AL.



Fig. 2. Conformation of the macrocycles (A or B) showing symmetry planes.

reported by Hirshfeld [18]; furthermore the positions of H-atoms are not well defined on difference syntheses, perhaps because hydrogen bonds are of the 'flip-flop' type. For both compounds the macrocycles possess two pseudosymmetry planes: the first is through C(8)and C(26) and the centres of O(38)—O(39) and O(41)—O(42), the second through O(37), O(40) and the centres of O(38)—O(42) and O(39)—O(41). The first plane seems to be an intersection of two cones as shown in Figure 2. These macrocycles can be described as a pitched cone as reported by several authors [11, 19–20]. The conformation of these macrocycles seems to be the same as that of the *p*-*t*-butyl derivative without a guest molecule [11]. The angles at the methylene bridges have values from 112.4 to 119.3° for compound B; the C--CH<sub>2</sub>--C point out of the calix except for two of them at C(8)and C(26) which point inside; the signs of the torsional angles in Table III show this fact too. The same is found for compound A. Some dihedral angles have been calculated and are given in Table IV; for both compounds angles between aromatic planes are about 107° except between 2-3, and 5-6 (values around 120°-130°); dihedral angles between methylene group planes and phenol rings are also given. Thus the two compounds have the same conformation but they crystallize with one main difference: with or without solvent molecules.

The molecular packing is given in Figures 3 and 4. For compound A only Van der Waals interactions are evident with isopropyl groups, some of them near oxygen atoms. Due to the similarity of the symmetry group, this structure is probably isomorphous with p-t-butylcalix[6]arene published by Andreetti [11].

| Planes | Planes | Angles    | Planes | Planes | Angles               |
|--------|--------|-----------|--------|--------|----------------------|
| 1      | 2      | 106.7(3)° |        | 7      | 96.3(3)°             |
| 2      | 3      | 119.3(3)° | 7      | 2      | 102.4(2)°            |
| 3      | 4      | 107.0(3)° | 2      | 8      | 90.3(3)°             |
| 4      | 5      | 106.1(3)° | 8      | 3      | 91.1(3)°             |
| 5      | 6      | 134.4(3)° | 3      | 9      | 102.5(1)°            |
| 6      | 1      | 107.8(3)° | 9      | 4      | 99.7(1)°             |
|        |        | • /       | 4      | 10     | 94.8(2)°             |
|        |        |           | 10     | 5      | 101.1(2)°            |
|        |        |           | 5      | 11     | 91.5(1)°             |
|        |        |           | 11     | 6      | 98.3(2)°             |
|        |        |           | 6      | 12     | 94.5(2) <sup>*</sup> |
|        |        |           | 12     | 1      | 93.2(2)°             |

Table IV. Dihedral angles (compound B). Numbering of the planes are reported in brackets in Figure 1.



Fig. 3. Stereoscopic view of the structure seen along [010] drawn by Pluto (Compound A).

Table V. Intermolecular bonds (Compound B).

| Benzene I: interac | ctions ( $<4$ Å) | with ring 3 and te | ert-butyl of rin | g 4.          |      |
|--------------------|------------------|--------------------|------------------|---------------|------|
| C(105)—C(9)        | 3.75             | C(102)-C(174)      | 3.82             | C(103)-C(176) | 3.92 |
| C(105)-C(10)       | 3.72             | C(103)—C(174)      | 3.84             | C(104)-C(176) | 3.30 |
| C(105)—C(11)       | 3.84             | C(104)—C(174)      | 3.64             | C(105)-C(176) | 3.73 |
| C(105)-C(12)       | 3.91             | C(101)-C(176)      | 3.88             | C(106)-C(176) | 3.76 |
| C(105)—C(13)       | 3.94             | C(102)-C(176)      | 3.96             | C(103)—C(24)  | 3.96 |
|                    |                  |                    |                  | C(103)-C(23)  | 4.00 |
| Benzene III: inter | actions ( <4 Å   | ) with rings 1-2-6 | ō.               |               |      |
| C(301)-C(42)       | 3.98             | C(302)-C(1)        | 3.82             | C(302)-C(7)   | 3.78 |
| C(301)C(27)        | 3.68             | C(302)—C(3)        | 3.77             | C(302)—C(35)  | 3.85 |
| C(301)-C(28)       | 3.90             | C(302)—C(4)        | 3.94             | C(302)—C(36)  | 3.69 |
| C(301)-C(38)       | 3.69             | C(302)—C(6)        | 3.96             | C(302)-C(42)  | 3.68 |
| C(301)-C(31)       | 3.94             | C(306)-C(27)       | 3.73             |               |      |
| C(303)—C(5)        | 3.99             | C(306)—C(28)       | 3.69             |               |      |
| C(303)—C(6)        | 3.91             |                    |                  |               |      |

Benzene III': interactions ( <4 Å) with rings 1-2-6.

| C(501)-C(34) | 3.80 | C(502) - C(1) | 3.85 | C(503) - C(3) | 3.93 |
|--------------|------|---------------|------|---------------|------|
| C(501)-C(35) | 4.00 | C(502)-C(7)   | 3.88 | C(503)—C(4)   | 3.90 |
| C(501)-C(28) | 3.91 | C(502)—C(33)  | 3.95 | C(503)—C(5)   | 3.73 |
| C(501)-C(29) | 3.71 | C(502)—C(34)  | 3.94 | C(503)—C(6)   | 3.46 |
| C(501)-C(30) | 3.70 | C(502)—C(35)  | 3.93 | C(503)—C(7)   | 3.45 |
| C(501)—C(31) | 3.91 | C(502)—C(36)  | 3.88 | C(503)—C(42)  | 3.70 |
| C(502)-C(37) | 3.90 | C(502)-C(42)  | 3.73 |               |      |

Benzene II and II': interactions ( <4 Å)

| C(202)—C(8)    | 3.98 | C(204) - C(113) | 3.86 | C(205)-C(116) | 3.99 |
|----------------|------|-----------------|------|---------------|------|
| C(405) - C(54) | 3.93 | C(401) - C(8)   | 3.94 | C(406) - C(8) | 3.93 |

Benzene I: interactions  $(\langle 4 \text{ Å} \rangle)$  with other calix[6]arenes.

| x, y, z + 1  |      |               | х    | x, y + 1, z     |      |
|--------------|------|---------------|------|-----------------|------|
| C(101)-O(37) | 3.75 | C(101)-C(294) | 3.76 | C(102)—C(234)   | 3.46 |
|              |      | C(103)-C(234) | 3.62 | C(102) - C(294) | 3.90 |

Benzene II and II': interactions ( <4 Å) with other calix[6]arenes:

| x - 1, y, z   |      |               | x, y, z + | 1             |      |
|---------------|------|---------------|-----------|---------------|------|
| C(205)-C(173) | 3.83 | C(204)—C(36)  | 3.95      | C(403)-C(36)  | 3.77 |
| C(403)—C(173) | 3.88 | C(402)-C(353) | 3.96      | C(403)—C(353) | 3.93 |



Fig. 4. Stereoscopic view of the structure seen along [001] drawn by Pluto (Compound B).

Compound B is a 1:3 complex with benzene. Table V shows the interactions (<4 Å) between the different benzene (I, II, III) and the calix[6]arene molecules. As mentioned previously benzene II and III are disordered in different manners: the angle between the ring planes II and II' is 17.7° while it is 74.4° between planes III and III', almost perpendicular. From Table V we see that molecule III interacts with three phenyl rings of a calixarene molecule, so this benzene is inside the half cone of the host molecule. Benzene I interacts with a ring and a *t*-butyl group, at the bottom of the cone, so there are some interactions: some with the calix(x, y, z) and others with calix(x - 1, y, z) and (x, y, z + 1). If we refer to Weber and Josel's [21] nomenclature, this compound is an intercalato cavitate, binary, monomolecular, trinuclear complex. Along the *a* axis, macrocycles and solvent form a column with cavities in the same direction.

# References

- 1. M. Coruzzi, G. D. Andreetti, V. Bocchi, A. Pochini and R. Ungaro: J. Chem. Soc., Perkin Trans. 2 1133 (1982).
- 2. G. D. Andreetti, A. Pochini and R. Ungaro: J. Chem. Soc. Perkin Trans. 2 1773 (1983).
- 3. C. Alfieri, E. Dradi, A Pochini, R. Ungaro and G. D. Andreetti: J. Chem. Soc., Chem. Commun. 1075 (1983).
- 4. A. Arduini, A. Pochini, S. Reverberi and R. Ungaro: J. Chem. Soc., Chem. Commun. 981 (1984).
- 5. R. Ungaro, A. Pochini, G. D. Andreetti and V. Sangermano: J. Chem. Soc., Perkin Trans. 2 1979 (1984).
- 6. R. Ungaro, A. Pochini, G. D. Andreetti and P. Domiano: J. Incl. Phenom. 3, 35 (1985).
- 7. C. D. Gutsche, A. E. Gutsche and A. I. Karaulov: J. Incl. Phenom. 3, 447 (1985).
- 8. R. Ungaro, A. Pochini, G. D. Andreetti and F. Ugozzoli: J. Incl. Phenom. 3, 409 (1985).
- 9. R. Ungaro, A. Pochini, G. D. Andreetti and P. Domiano: J. Chem. Soc., Perkin Trans. 2 197 (1985).
- 10. S. Bott, A. Coleman and J. L. Atwood: J. Chem. Soc., Chem. Commun. 8, 610 (1986).
- 11. G. D. Andreetti, G. Galestani, F. Ugozzoli, A. Arduini, E. Ghidini, A. Pochini and R. Ungaro: J. Incl. Phenom. 5, 123 (1987).
- 12. C. D. Gutsche: Acc. Chem. Res. 14, 161 (1983).
- 13. C. D. Gutsche: Top. Curr. Chem. 123, 1 (1984).
- 14. G. Sheldrick: SHELX-76, program for Crystal Structure determination. University of Cambridge (1976).
- 15. P. Main, S. F. Hull, L. Leisinger, G. Germain, J. P. Decercq and M. M. Woolfson: *Multan 80.* A system of computer program for automatic solution of crystal studies from X-Ray diffraction data, Univ. of York, England and Univ. of Louvain, Belgium (1980).

# STRUCTURE OF TWO CALIX[6]ARENES

- 16. D. Oehler: Thesis, Université Lyon I, 23 Juin 1987.
- 17. M. Halit: Thesis, Université Lyon I, 17 Décembre 1987.
- 18. F. L. Hirshfeld: Isr. J. Chem. 2, 87 (1964).
- 19. C. D. Gutsche, B. Dhawan, K. H. No and R. Muthukrishnan: J. Am. Chem. Soc. 103, 3782 (1981).
- 20. C. D. Gutsche and L. J. Bauer: J. Am. Chem. Soc. 107, 6052 (1985).
- 21. E. Weber and H. P. Josel: J. Incl. Phenom. 1, 79 (1983).